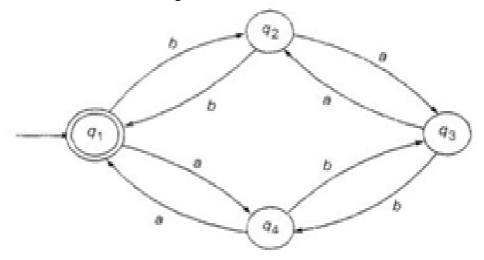
Print	ed Pa	ge:- Subject Code:- BCSE0404/BCSEH0404 Roll, No:
NC	DIDA	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
110		(An Autonomous Institute Affiliated to AKTU, Lucknow)
		B.Tech
		SEM: IV - THEORY EXAMINATION (20 20) Subject: Theory of Automata and Formal Languages
Tim	ne: 3 I	Hours Max. Marks: 100
		structions:
		y that you have received the question paper with the correct course, code, branch etc.
		stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice MCQ 's) & Subjective type questions.
	,	n marks for each question are indicated on right -hand side of each question.
		your answers with neat sketches wherever necessary.
		uitable data if necessary.
	v	ly, write the answers in sequential order.
		should be left blank. Any written material after a blank sheet will not be hecked.
Cvaine	aicu, ci	neckeu.
SECT	TION-	<u>-A</u> 20
1. Att	empt a	all parts:-
1-a.	In	n given diagram, FSM represents: (CO1, K1)
		1/0.0/1
	(a)	Mealy machine
	(b)	Moore Machine
	(c)	Kleen machine
	(d)	All of these
1-b.	In is	a Deterministic Finite Automaton (DFA), for each state and input symbol, there (CO1,K1)
	(a)	No transition
	(b)	At most one transition
	(c)	Exactly one transition
	(d)	More than one transition
1-c.	Id	lentify the type of automaton that recognizes regular languages. (CO2, K1)
	(a)	Finite Automaton
	(b)	Pushdown Automaton
	(c)	Turing Machine
	(d)	Linear Bounded Automaton
1-d.	C	onstruct a regular expression for the language consisting of all strings over $\{0,1\}$

	th	nat start with 1. (CO2,K1)	
	(a)	1(0+1)*	
	(b)	(0+1)*1	
	(c)	0*1*	
	(d)	None of these	
1-e.	Select the root of the parse tree: (CO3,K1)		1
	(a)	Production P	
	(b)	Terminal T	
	(c)	Variable V	
	(d)	Starting Variable S	
1-f.		The Grammar can be defined as: $G=(V, \Sigma, P, S)$ In the given definition, what does represents? (CO3,K1)	1
	(a)	Accepting State	
	(b)	Sensitive Grammar	
	(c)	Starting Variable	
	(d)	Production Rules	
1-g.	Limitation of PDA can overcome by: (CO4,K1)		
	(a)	Mealy machine	
	(b)	Moore machine	
	(c)	Turing machine	
	(d)	FA	
1-h.	A	analyze the language $L = \{a^nb^nc^n \mid n \geq 1\}$. Can a single-stack PDA	1
		ccept this language? (CO4, K1)	
	(a)	Yes, by using both acceptance by final state and empty stack	
	(b)	Yes, with non-deterministic transitions	
	(c)	No, because it requires comparing three symbols with one stack	
	(d)	No, because it requires two final states	
1-i.	A	Turing Machine (TM) is: (CO5,K1)	1
	(a)	A finite state machine with memory	
	(b)	A computational model capable of simulating any algorithm	
	(c)	A machine with limited processing power	
	(d)	A simple calculator for basic arithmetic operations	
1-j.	_	is a fundamental concept in the Turing machine model.	1
-		(CO5,K1)	
	(a)	Quantum entanglement	
	(b)	Infinite tape	
	(c)	Neural networks	
	(d)	Bayesian inference	

2. Attem	ppt all parts:-	
2.a.	Differentiate between Kleene Closure (\sum^*) and Positive Closure (\sum^+). (CO1, K2)	2
2.b.	Define regular expression for the language containing all the words over $\{a,b,c\}$ ending in a . (CO2, K2)	2
2.c.	Define ambiguous grammar? Give an example. (CO3,K2)	2
2.d.	Give reason why PDA cannot accept the language $\{a^nb^nc^nd^n, n \ge 0.\}$ (CO4, K2)	2
2.e.	Define Church's Turing Thesis. (CO5, K2)	2
SECTIO	<u>ON-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Explain the mathematical model of a finite automaton with an example. (CO1,K2)	6
3-b.	Construct a Finite automata (DFA) which accepts all binary numbers whose decimal equivalent is divisible by 4 over $\Sigma = \{0, 1\}$. (CO1, K4)	6
3-c.	State and prove Arden's Theorem. (CO2, K4)	6
3-d.	Define Regular Grammar. Also, convert given regular grammar to finite automata. $S \rightarrow aS$, $S \rightarrow bS$, $S \rightarrow bA$, $A \rightarrow bB$, $B \rightarrow aC$, $C \rightarrow \epsilon$. (CO2, K4)	6
3.e.	Given the following CFG: S→aA bB C A→a aA B B→b Bb C C→cC c a) Identify and remove the useless symbols from the grammar. b) Eliminate unit productions from the resulting grammar.	6
3.f.	Describe a two-stack PDA and explain its working with a suitable example. (CO4, K2)	6
3.g.	Explain Post Correspondence Problem (PCP) (CO5, K2)	6
SECTIO	ON-C	50
4. Answe	er any one of the following:-	
4-a.	i) Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)	10
	ii)Design a DFA over the alphabet {0,1} that accepts all strings ending with "0001". (CO1, K4)	
4-b.	Explain the mathematical model of Mealy machine and Moore machine.	10

(CO1, K2)


- 5. Answer any one of the following:-
- 5-a. Write short note on: (CO2, K2)

10

- (a)Closure properties of Regular Language
- (b) Decision Properties of regular Language
- 5-b. Find the solution of DFA using Arden's theorem.

(CO2, K4)

- 6. Answer any one of the following:-
- 6-a. Compare Chomsky normal form(CNF) and Greibach Normal form (GNF). Convert the given CFG into CNF: (CO3,K4)

10

10

- $S \rightarrow aSa \mid bSb \mid a \mid b$
- 6-b. Consider the grammar G, whose productions are:

(CO3,K4)

 $S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid aBB$

.Find a) Leftmost b) rightmost derivation for string for the string baaabbabba and construct derivation tree also.

- 7. Answer any one of the following:-
- 7-a. Explain Pushdown Automata and analyze how its power compares to Finite Automata. Also, design a PDA for $L = \{a^{m+n}b^mc^n \ m, \ n > 1\}$.

10

- (CO4, K4)
- 7-b. Explain Pushdown Automata. Also, construct a PDA that accepts all strings containing an equal number of 0's and 1's. (CO4, K4)

10

- 8. Answer any one of the following:-
- 8-a. Write short notes on:
- (CO5, K2)

10

10

- i) Universal Turing Machine
- ii) Variants of Turing machine
- 8-b. Explain the Turing machine. Construct the Turing machine for the language $L = \{a^nb^nc^n, n > = 1\}$. (CO5, K4)